
Dealing with time in databases and
data models: implementation

Prof. dr. Bas van Gils

Bas.vanGils@strategy-alliance.com
Managing partner @ Strategy Alliance
Professor @ Antwerp Management School

Introduction
This is a follow-up to an earlier earlier article
where I explored the notion of time in relational
databases from a design perspective. In this
article I aim to explore how a sound design can
be implemented in an SQL-based database.

I have been interested in this topic for several
years, both from a theory and practical
perspective. After reading up on the topic, I
decided to collect my thoughts and start writing.
The previous article was based heavily on the
book Time and Relational Theory: Temporal
Databases by C. J. Date and others (see e.g.
Amazon). In that article, I explored: (1) the notion
of valid time versus transaction time and (2) the
notion of what time is/how it can be represented
in relational databases. I made a distinction
between the conceptual level (where we
structure data, often using modeling techniques
such as ERD) and the implementation level
(which deals with the representation in the
underlying platform). In short, my conclusion
was as follows:

For the time being, I have learned that dealing
with time (and particularly with time intervals)
should be trigger alarm bells. It seems so simple
to simply add some attributes to your entity
types and then build/generate your physical data
model. Hopefully this short exploration
convinces you that such topics require more
careful thought.

Shortly after writing that article, I shared it with
a dear friend to see what she thought. She
responded as follows:

I have many thoughts about the concept of time
in databases. We experience trouble with
employee benefits and salaries all the time.
Conceptually an employee could have zero or

many benefits (insurance, retirement, tuition,
wellness stipends, more). Those benefits may
start and end at different times, so it is always a
struggle to use effective dating of ‘what the
current benefits are’ at any given time, if they
even exist.

And… Have you thought about (and/or does Date
address it) about the dimension of time in a
warehouse? Here’s a horrible example of time
that causes us issues - we like to count how
many applications/admits/deposits we have on
any given date, compared to last year’s count. It’s
a different concept but a major date struggle for
us.

I thought it would be fun to tackle the former
question (and set the latter aside, for now). The
goal of this article, therefore, is to see if we can
come up with a way to build and SQL-database
using the theory as described in the previous
article. I hope to give the interested reader some
insight in the mechanics of more advanced
database design topics. Lector caveat.

PostgreSQL
I'm going to play with this problem on my Mac
Mini with a fresh install of the PostgreSQL DBMS.
Note that this is an SQL-based dbms. It isn't a
fully relational database (tables instead of
relations, allowing null-"values", etc.) but it does
a pretty good job.

Step one is to create a new database. We don't
need any of the fancy options around templates
and encoding. Therefore, we start simple:

CREATE DATABASE benefits;

We must also connect to the database using the
\c command. After that, we are good to go.

https://www.amazon.com/Time-Relational-Theory-Databases-Management-ebook/dp/B00N2SNSUG

Big picture analysis
If you're not careful, even this “simple” problem
can become pretty big and messy. I'm going to
focus on the first question here: “How do we deal
with benefits that vary over time and figure out
how to do that in a relational database?” I'm also
going to make some assumptions to simplify the
problem somewhat:

• I'm going to assume that benefits are for an
EMPLOYEE and that we can uniquely identify
EMPLOYEES with a number.

• Further, I'm going to assume that numbers
are never re-used. So far, all the time a
specific number, say 007, is used once and
only once. If that weren't the case, we'd have
to make a more complex key for EMPLOYEE,
namely the combination of a number and a
date.

• I'm also going to assume that BENEFITs of
some type are of a fixed amount per month
(i.e. if you have a retirement benefit then that
amounts to X per month. We can later change
this with a percentage if we want: if you have
a 60% retirement benefit then you get 60% of
X per month).

• Along the same lines as with EMPLOYEE, I am
going to assume that the amount doesn't
change over time. If we really want to, we can
always introduce a timing mechanism but for
the time being that would steer us away from
the key point that we are trying to solve.

I will probably end up with at least the following
relvars (tables): EMPLOYEE, BENEFIT,
EMPBENEFIT. When we start playing with dates,
this is likely to get even more tricky. We'll see.

Settting up EMPLOYEE
Since we're dealing with a dummy example, I'm
not going to do anything fancy here. It is likely
that an unique number, first name, last name etc.
is enough.

Please note that we could work with transaction
time here: when was a specific row (more
formally: a tuple / proposition about our domain)
added to the database. For the fun of it I'll add it,
just so we can see what that looks like. As a
reminder, the DATE data type uses a YYYY-MM-
DD format.

The statement to create the table is:

benefits=# CREATE TABLE EMPLOYEE(
 EMPNR INTEGER NOT NULL,
 FNAME VARCHAR(25) NOT NULL
 LNAME VARCHAR(25) NOT NULL
 MODDATE DATE NOT NULL,
 PRIMARY KEY (EMPNR));

Note that the NOT NULL part of the empnr
attribute is probably superfluous since we're
also making this our primary key. I've simply
made it a habit to always add these constraints
without fail: any design that allows NULL “values”
(particularly in base relations/tables) is a poor
design in my opinion. The predicate of this table
is: the EMPLOYEE with number EMPNR, first
name FNAME, and last name LNAME was added
on date MODDATE. Seems reasonable enough.

All in all this looks good. We can start populating
our EMPLOYEE table with some SQL INSERT
statements, ending up with the following:

SELECT * FROM EMPLOYEE;
 empnr | fname | lname | moddate
-------+-------+----------+------------
 7 | Bas | Van Gils | 2002-02-01
 1 | Becky | Frieden | 2001-01-01
 666 | Lisa | Gaudette | 2000-06-01
(3 rows)

Aside: I probably should have made empnr a
VARCHAR too just so I could give myself my
usual number, being 007. End of a side.

Setting up benefits
With the assumptions that I made, this should
also be straightforward, perhaps even more so.
This time we don't even need a unique number to
identify benefits. The set of attributes {BNAME}
for benefit name is probably sufficient (note: a
set with 1 element is still a set, hence the curly
brackets).

CREATE TABLE BENEFIT(
 BNAME VARCHAR(50) NOT NULL,
 BAMOUNT INTEGER NOT NULL,
 MODDATE DATE NOT NULL,
 PRIMARY KEY (BNAME));

After adding some data to this table, we end up
with:

SELECT * FROM BENEFIT;
 bname | bamount | moddate
------------+---------+------------
 insurance | 100 | 2000-01-01
 retirement | 80 | 2000-01-01
 tuition | 80 | 2000-01-01
(3 rows)

In my simple setup, all the benefits have been
added to our database on 1 January of 2000. Not
too fancy, but it serves our purposes for now. At
the very least the mechanism will allow us to
query when certain benefits were added.

For the fun of it, we can now check what the
database consists of:

 List of relations
 Schema | Name | Type | Owner
--------+----------+-------+------------
 public | benefit | table | basvangils
 public | employee | table | basvangils
(2 rows)

I am going to be somewhat cheeky here and
point out that the \d command apparently lists
the relations in this database, yet in the Type
column of the output we see that we're really
dealing with tables. For the fun of it, I looked in
the PostgreSQL specification and found this:

PostgreSQL is a relational database
management system (RDBMS). That means it is a
system for managing data stored in relations.
Relation is essentially a mathematical term for
table.

I very much disagree with this and I'll just
conclude for the time being that the PostgreSQL
spec is wrong and that "list of relations" should
simply have said "list of tables" for that is what
we're dealing with. Incidentally, asking ChatGPT
doesn't give me any better answers.

Exporing date-intervals
Conceptually, date-intervals are tricky enough.
I'm following the convention of C. J. Date to say
that [a,b] is a date-interval that starts with date a
(inclusive) and ends with dates b (inclusive). Had
we used rond brackets then the date would be
exclusive. For example, [c, d) would start at c
(inclusive) and stop at d (exclusive). When
working with intervals, we also have to be very
precise in the grain that we use. For example:

• We use years only. Then we can say [2000,
2022) to indicate a period that starts at
(including) the year 2000 and ends at (But
excluding) the year 2021. It would be
equivalent to [2000,2021].

• We use months and years. Then we can say
[Jan-2000, Dec-2022) to indicate a period that
starts at (including) January of 2000 and
ends at (but excluding) December of 2022. It
would be equivalent to [Jan-2000, Nov-20222]

• Etc.

Checking the PostgreSQL specification, I noticed
that there is such a thing as an INTERVAL type.
However, this type functions more as a
"duration". The examples for interval input in the
spec are shown in the table.

While probably useful in various contexts, this is
not really what I wanted. If I were to use this, I'd
have to specify the startdate and the interval to
get anything meaningful out of it.

We'll either have to use the classic solution with
a table that has a start date and end date, or
create a type of our own. I haven't done that very
often yet, so after playing with the specification
for a bit, I decided to ask my friend ChatGPT to
generate the code for me. The query I gave
ChatGPT is:

In postgresql, create a type called DINTERVAL
that has a start date of type DATE and an end
date of type DATE. Make sure that the start date
is always before the end date. Also create a
function that takes a date and an DINTERVAL as
input and returns TRUE if the date is in the
interval and FALSE otherwise. Also add a
function that takes a DINTERVAL and computes
the duration, defined as the difference between
end date and start date.

In a few seconds it came up with the following:

-- create the type itself.
CREATE TYPE DINTERVAL AS (
 start_date DATE,
 end_date DATE
);

-- Create a function to check if a date
-- is within the interval:
CREATE OR REPLACE FUNCTION
date_in_dinterval(
 date_to_check DATE,
 dinterval DINTERVAL)
RETURNS BOOLEAN AS $$
BEGIN
 RETURN (date_to_check >=
 dinterval.start_date AND
 date_to_check <= dinterval.end_date)
END;
$$ LANGUAGE plpgsql;

1-2 SQL standard format :
1 year and 2 months

3: 4:05:06 SQL standard format :
3 days 4 hours 5
minutes 6 seconds

1 year 2 months 3 days
4 hours 5 minutes 6
sseconds

Traditional Postgres
format: 1 year 2
months 3 days 4 hours
5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with
designators”: same
meaning as above

P0001-02-03T04:05-06 ISO 8601 “alternative
format”: same meaning
as above

https://www.postgresql.org/docs/current/datatype-datetime.html

-- Create a function to compute the
-- duration of the DINTERVAL:
CREATE OR REPLACE FUNCTION
dinterval_duration(dinterval DINTERVAL)

RETURNS INTERVAL AS $$
BEGIN
 RETURN dinterval.end_date -
 dinterval.start_date;
END;
$$ LANGUAGE plpgsql;

It also gave some suggestions for using the type/
functions as follows:

-- Check if a date is in the DINTERVAL
-- Returns TRUE
SELECT date_in_dinterval('2023-01-05',
my_dinterval);

-- Compute the duration of the DINTERVAL
-- Returns '9 days'
SELECT dinterval_duration(my_dinterval);

This actually looks pretty useful. It did omit the
integrity constraint that the start date of a
DINTERVAL should be before the end date, but I
can live with that for now.

Setting up the benefits for
employees
The theory suggests that we should distinguish
between two relvars for storing data about
BENEFITs of EMPLOYEEs:

• EMPBENEFIT_SINCE should reflect that an
EMPLOYEE has a BENEFIT as of (and ever
since) a certain start date. The predicate
would be: the Employee with number EMPNR
has benenfit with name BNAME since date
BSTART.

• EMPBENEFIT_DURING should reflect that an
EMPLOYEE had a BENEFIT during a certain
period. The predicate would be: the Employee
with number EMPNR had benenfit with name
BNAME during period BPERIOD.

This would lead to the design shown below
(incidentally, I created this with MIRO which now
seems to have basic ERD modeling capabilities).

Note that there are foreign key constraints (FKs)
between EMPBENEFIT_SINCE and EMPLOYEE and
BENEFIT, as well as between EMPBENEFIT_
DURING and EMPLOYEE and BENEFIT. These
basically specify that an EMPBENEFIT can only
be registered if both the EMPLOYEE and the
BENEFIT actually exist.

There is, however, an additional constraint that is
missing here: it seems awkward for an employee
to have an ongoing benefit as of some start date

listed in EMPBENEFIT_SINCE while, at the same
time, that start date falls smack in the middle of
a benefit period in EMPBENEFIT_DURING. This
could potentially lead to the situation where we
mistakenly conclude that the employee should
be paid this benefit twice! The table creation is
straightforward:

CREATE TABLE EMPBENEFIT_SINCE(
 EMPNR INTEGER NOT NULL,
 BNAME VARCHAR(50) NOT NULL,
 BSTART DATE NOT NULL,
 PRIMARY KEY (EMPNR, BNAME),
 CONSTRAINT
 FK_EMP FOREIGN KEY (EMPNR)
 REFERENCES EMPLOYEE(EMPNR) ,
 CONSTRAINT
 FK_BEN FOREIGN KEY (BNAME)
 REFERENCES BENEFIT(BNAME));

CREATE TABLE EMPBENEFIT_DURING(
 EMPNR INTEGER NOT NULL,
 BNAME VARCHAR(50) NOT NULL,
 BPERIOD DINTERVAL NOT NULL,
 PRIMARY KEY (EMPNR, BNAME,BPERIOD),
 CONSTRAINT
 FK_EMP FOREIGN KEY (EMPNR)
 REFERENCES EMPLOYEE(EMPNR) ,
 CONSTRAINT
 FK_BEN FOREIGN KEY (BNAME)
 REFERENCES BENEFIT(BNAME));

Note that the DURING version is all-key
(meaning: all attributes are part of the key). This
is because we can have multiple periods in
which an employee has a benefit. In the SINCE
version that is not the case.

In TutorialD, the lanuage that C. J. Date uses in
his book, it is easy to specify a constraint over
two relations. In SQL it is less straight forward. I
figured that, on top of the FKs, I'd probably need
some fancy constraint that is implemented
through a function that is triggered upon
updates. Here's the query for ChatGPT (after it
did such a good job the first time, I figured I'd try
this again):

EMPLOYEE

EMPNR

FNAME

LNAME

MODDATE

BENEFIT

BNAME

BAMOUNT

MODDATE

EMPBENEFIT_SINCE

EMPNR

BNAME

BSTART

EMPBENEFIT_DURING

EMPNR

BNAME

BPERIOD

Assume that I continue to work in postgresql.
Suppose I create an EMPBENEFIT_SINCE table
that has three attributes: an EMPNR (integer), a
BNAME (varchar) and a BSTART (date). I also
create an EMPBENEFIT_DURING table with three
attributes: an EMPNR (integer), a BNAME
(varchar) and a BPERIOD (DINTERVAL). I want to
implement an integrity constraint that specifies
that the BSTART in EMPBENEFIT_SINCE must
always after the end date of the BPERIOD in
EMPBENEFIT_DURING (if it exists). How can I do
this?

Surely enough it first spits out the creation of the
DINTERVAL type and simplified versions of the
appropriate relations (it couldn't have figured out
the FK constraints because I didn't list them in
my query). It then indeed generates a nice
function that does the appropriate check and is
triggered upon inserts and updates:

-- define the function that does the check
CREATE OR REPLACE FUNCTION
 check_benefit_start_date()
RETURNS TRIGGER AS $$
BEGIN
 -- it included this but it doesn't
 -- seem necessary we certainly do not
 -- want to allow NULL "values"
 -- IF NEW.BSTART IS NULL THEN
 -- RETURN NEW;
 -- END IF;

 IF EXISTS (
 SELECT 1
 FROM EMPBENEFIT_DURING b
 WHERE
 b.EMPNR = NEW.EMPNR
 AND b.BNAME = NEW.BNAME
 AND (b.BPERIOD).end_date >=
 NEW.BSTART
) THEN
 RAISE EXCEPTION 'BSTART must be
 after the end of the BPERIOD.';
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- create the trigger that enforces the
-- constraint
CREATE TRIGGER
 enforce_benefit_start_constraint
BEFORE INSERT OR UPDATE ON
 EMPBENEFIT_SINCE
 FOR EACH ROW
 EXECUTE FUNCTION
 check_benefit_start_date();

I will admit that I'm pretty impressed at this
point: ChatGPT’s code may not be perfect but
with some minor tweaking it gets the job done.

Additional constraints
Before diving into data entry, I realized that there
is a set of constraints that we currently cannot
implement. It has to do with transaction time

versus valid time in the EMPLOYEE and BENEFIT
tables (relations). Note that, currently, we only
have transaction times in these tables. We could
interpret this as "an employee/benefit exists as
soon as it is entered in the system and until it is
removed from the system" but that is not how
the real world works as the following example
shows. It could very well be the case that
someone started working for us as of 1-feb-2022
but we didn't have time to enter this into the
system until 03-mar-2023. The same goes for
benefits.

The implication for entering the benefit of an
employee in the EMBENEFIT tables is that we
must check whether the start date in
EMPBENEFIT (in either the SINCE or DURING
version) is after the valid date in both EMPLOYEE
and BENEFIT, regardless of the transaction date.
To put it differently: we have to check if the
employee is really a valid employee and a benefit
is really a valid benefit. This will be a tricky
constraint to implement. It will probably require
another function and associated trigger. Given
that I haven't implemented the valid time
attributes, I'll leave this for the time being.

Adding benefits of employees
Adding data isn't too hard. In the DURING-version
of the table, you have to take care to use periods
rather than simple dates but that is doable. As an
example is as follows:

INSERT INTO EMPBENEFIT_DURING
 (EMPNR, BNAME, BPERIOD)
VALUES ('7', 'insurance',
 ('2003-01-01'::DATE,
 '2003-12-31'::DATE));

After a few INSERTs, we end up with the
following:

SELECT * FROM EMPBENEFIT_DURING;

 empnr | bname | bperiod
-------+-----------+---------------------
 7 | insurance | (2003-01-01,
 | | 2003-12-31)
 7 | insurance | (2005-01-01,
 | | 2005-12-31)
 7 | tuition | (2004-01-01,
 | | 2004-06-30)
 666 | tuition | (2004-01-01,
 | | 2004-12-31)

(4 rows)

Now we can check our constraint for adding data
to the EMPBENEFIT_SINCE. Recall that the whole
point of this constraint is to ensure that the start
date in the SINCE table is after all of the "end of
period" in each of the associated PERIODs in the
DURING table, if any. We'll try to add an benefit of
insurance for person with number 7, starting in

2007 (which is well after the last period was
closed).

INSERT INTO EMPBENEFIT_SINCE
 (EMPNR, BNAME, BSTART)
VALUES
 ('7', 'insurance', '2007-01-01'::DATE)
INSERT 0 1

That went well: 0 errors and 1 row inserted. Now
lets try for failure. We're going to add a tuition
benefit for the employee with number 666 that
starts in the middle of 2004:

INSERT INTO EMPBENEFIT_SINCE
 (EMPNR, BNAME, BSTART) VALUES
 ('666', 'tuition', '2004-07-01'::DATE);
ERROR: BSTART must be after the end of
the BPERIOD.
CONTEXT: PL/pgSQL function check_benefit_
start_date() line 17 at RAISE

That seems to work really nicely: we get an
error. When we change 2004 to 2007, the insert
statement does work, as expected:

INSERT INTO EMPBENEFIT_SINCE
 (EMPNR, BNAME, BSTART) VALUES
 ('666', 'tuition', '2007-07-01'::DATE);
INSERT 0 1

To be clear, the current population of this table is
as follows:

SELECT * FROM EMPBENEFIT_SINCE;
 empnr | bname | bstart
-------+-----------+------------
 7 | insurance | 2007-01-01
 666 | tuition | 2007-07-01
(2 rows)

Let's say that the tuition-benefit of 666 ends at
the end of 2007. We can simply add the row to
EMPBENEFIT_DURING:

INSERT INTO EMPBENEFIT_DURING
 (EMPNR, BNAME, BPERIOD)
VALUES
 ('666', 'tuition',
 ('2007-07-01'::DATE,
 '2007-12-31'::DATE));
INSERT 0 1

This gives the following population of that table:

SELECT * FROM EMPBENEFIT_DURING;
 empnr | bname | bperiod
-------+-----------+---------------------
 7 | insurance | (2003-01-01,
 | | 2003-12-31)
 7 | insurance | (2005-01-01,
 | | 2005-12-31)
 7 | tuition | (2004-01-01,
 | | 2004-06-30)
 666 | tuition | (2004-01-01,
 | | 2004-12-31)
 666 | tuition | (2007-07-01,
 | | 2007-12-31)
(5 rows)

This should not be possible! Note that we have a
row in the DURING Table for a tuition benefit of
employee 666 that starts at 1 july 2007, but we
also have a row in the SINCE table that has a
tuition benefit of the employee 666 that starts at
1 july 2007. Our trigger-constraint should have
prevented this.

Looking back, I it is easy to see what went
wrong: the trigger is on an insert in the SINCE
table only, and not the DURING table - so if we
really want to get this correct, we'll have to
expand our constraints once more. As it stands,
we'll have to remove the corresponding row from
the SINCE table anyway. This illustrates a) why
good design is so important, and b) some of the
challenges around the way these constraints
must be implemented in SQL-based databases.
Expanding this point would require another blog
post, so I’ll set it aside for now (and perhaps
write that blog in a little while).

In a realistic scenario, the two updates (one
insert, one delete) should occur as one whole. In
TutorialD this is done with a compound
statement. In any SQL database, we are stuck
wrapping this in a transaction if we really want
to treat the two as one whole.

Querying the database
The last step to explore here is querying the
database. With the amount of tables (relations)
that we have, that may seem daunting. Luckily,
though, it is actually the inverse: querying the
database should be mostly straightforward
thanks to our good design.

To substantiate that claim, I will present with two
observations and an example. The observations
are:

• The data about past/completed benefit
periods are stored in the _DURING table. If we
want to know something about the past, we
only have to look at this table.

• The data about ongoing benefit periods are
stored in the _SINCE table. If we want to know
something about the present, we only have to
look at this table.

So far so good! This leaves the matter of queries
that touch upon both tables. This would be the
case where we combine data about the past and
current situation. An example would be: show me
the benefits of a specific person and make sure
to include both past and ongoing benefits.
Observe that the _DURING table (past benefits)
has a column (attribute) that holds periods with

a start date and an end date. However, the _
SINCE (ongoing) table has a column (attribute)
with a start date only. The two do not match so
we cannot simply perform a union on two result
sets. The solution lies in the combination of:

• Unpack the period from the _DURING table in
a start_date and an end_date.

• Extend the results from the _SINCE table with
a column that has NULL “values” for the end_
date. Note: I am very much against using
NULLs in (base) relations, but for such a
query it is actually useful and perhaps even
necessary.

The code would be as follows:

SELECT EMPNR AS NR, BNAME AS NAME,
 (BPERIOD).start_date as START,
 (BPERIOD).end_date as END
 FROM EMPBENEFIT_DURING
 WHERE EMPNR='7'
UNION
 SELECT EMPNR AS NR, BNAME AS NAME,
 BSTART AS START,
 NULL AS END
 FROM EMPBENEFIT_SINCE
 WHERE EMPNR='7';

And the result of this query would be:

nr | name | start | end
---+-----------+------------+----------
 7 | tuition | 2004-01-01 | 2004-06-30
 7 | insurance | 2005-01-01 | 2005-12-31
 7 | insurance | 2003-01-01 | 2003-12-31
 7 | insurance | 2007-01-01 |

(4 rows)

That looks fairly painless. On top of the
unpacking and addition of a column for
purposes of the JOIN, I also did some
renaming to make sure the table has a
“friendly” look.

Conclusion
The objective of this blog post was to 'play' with
the theory around (a) transaction/valid time and
(b) time intervals in a relational / sql database.
As pointed out in several places, relational
databases aren't really relational. Based on a
relatively simple use case from the real world, I
set out to see how to implement things properly
in an SQL databases. My lessons learned is as
follows:

• I still like playing with PosgreSQL. It's a fun
database with good documentation.

• I must admit that my SQL skills (particularly
for defining triggers and functions) is a bit
rusty. This exploration did give me the

opportunity to play with ChatGPT a little.
ChatGPT gave me surprisingly good results
(despite the fact that I had to tweak the code
just a little).

• The conceptual model for this case is not
super complex. Implementing it is another
story.

• Defining my own type for DINTERVAL (date
intervals) was straightforward, but setting up
the appropriate integrity constraints was far
from easy. Even when doing this carefully,
step by step, I still missed some constraints.

• Having to work with functions/triggers
makes it very difficult to implement relatively
simple / obvious integrity constraints.

• I still wish a relational database system (e.g.
PostgreSQL) were truly relational ;-)

All in all, I do believe that a "proper"
implementation is possible, particularly for
developers that have a lot more experience in
implementing constraints using functions and
triggers. I also think it is worth it to go through
these steps. You're building a database for a
reason: because you want to have data that
captures your understanding of a domain such
that it can stand for that domain. Why would you
not spend the time to come up with a good
design?

I hope you find this article interesting. If you have
some thoughts or comments, please feel free to
drop me a note. I’ll be thinking about this topic
for a while longer. Thanks!

